Zero Knowledge Proofs

High-level primer

@blockdeveth

Privacy & Scaling Explorations

June 20, 2024


https://x.com/blockdeveth

Table of Contents

Introduction

ZK proof system
Trusted setup

ZK stack

Exciting applications

@ Learning resources



Introduction

Related

Context: Zero-knowledge cryptography, Zero-knowledge proofs,
privacy, scalability.



Introduction

The Setup

m A function y = f(x1, X2, ..., Xn)-
m Some inputs are private: {xi,...,x;}, rest are public
{Xi—l-lv"'axnay}'

m Private inputs mean that the input values are only known to
the Prover.

m Public inputs mean that the Prover will send the input values
to the Verifier.



Introduction

The Goal

m Prover has to convince the Verifier that it has correctly
computed the following while keeping {xi, ..., x;} private:

y = f(x1, s Xi5 X415 0, Xn)

m In other words, Verifier has to be convinced that given
{Xf+17 ceey Xny y}
Prover knows values for {x, ..., x;} (witness) such that

Y = (X1, ooy Xiy Xit 1y ovs Xn)

m Verifier should only learn about the truth of the statement,
and nothing else (private inputs, intermediate values), hence
Zero-knowledge.



Introduction

Example

The Setup
m Our function: y = SHA(x).
m Private input: x

m Public input: y

The Goal

m Verifier has to be convinced that Prover knows some x such
that y = SHA(x).



Introduction

One specific instance

m Prover computes y; = SHA(12834992849219753).

m |t generates a proof p (a long string of bytes), and sends
(p,y1) to Verifier.

m Verifier runs its program on (p, y1).

m Verifier is convinced iff the program returns true.

Application: Password verification. Server stores the password
hash, and user generates a ZK-proof to prove it knows the related
password.



Introduction

One specific instance




Introduction

zkEVM Example

The Setup
m Our function: new_state = EVM(state, transaction).
m No Private input.

m All inputs are public.

The Goal

m Verifier has to be convinced that the transaction was executed
correctly by the Prover.



ZK proof system

Assumptions as application devs

m Verifier is honest.

m Prover is dishonest.



ZK proof system

What is a ZK proof system?

Given a function y = f(x1, ..., Xi, Xi41, -.-, Xn), @ ZK proof system
defines how to write a Verifier program V, and a Prover program P:
m Honest prover can run P to generate proof, and send data to
verifier.
m Verifier can input received data into V, and accept or reject
the proof.
m Grothl6, Plonk, STARK.



ZK proof system

Example

m V can be deployed as a smart contract.

m P can be run on user devices, and the proof and public inputs
can be sent with the transaction.



ZK proof system

Properties of a ZK proof system

m Completeness: Prover can convince Verifier of true
statements.

m Soundness: Malicious Prover cannot convince Verifier of false
statements.

m Zero-knowledge: Verifier should not learn anything except
the validity of the statement.

m Enables privacy (e.g. MACI).
m |deally Succintness: Small proof, fast to verify
m Enables scaling (e.g. Rollups, Mina).


https://maci.pse.dev/

ZK proof system

Parameters to evaluate ZK proof systems

m Proof size: Size (in B, KB) of the generated proof.

m Proof generation time: Time required to generate ZK proof by
an honest prover.

m Proof verification time: Time required to verify the proof by
an honest verifier.

m Quantum resistance: Does quantum computing break any
property of the ZK proof system?

m Need for trusted setup.



Trusted setup

Trusted Setup

Remember “The Setup” from before?
m You have a function y = f(xy, x2, ..., Xp).

m Some inputs are private. Let's say the first i inputs are
private: {xi,...,x;} and the rest are public {xjt1, ..., Xn, ¥ }.

m Private inputs mean that the values of these inputs are only
known to the Prover.

m Public inputs mean that the Prover will send the values of
these inputs to the Verifier.



Trusted setup

Trusted Setup

Remember “The Setup” from before?

Some ZK proof systems require pre-processing to generate
parameters for the setup phase. These parameters are used every
time the proof system protocol is run.

These parameters are generated via Trusted Setup ceremony.

A random secret number is required to generate these
parameters.

Access to this secret allows generating fake proofs and
cheating the verifier.

This secret has to be discarded after the trusted setup
ceremony is complete. Hence, “toxic waste”.

Hence the name “Trusted” setup ceremony, since we are
trusting (or assuming) secret is discarded by the generator.



Trusted setup

Trusted Setup

Trusted setup
generation
procedure

2. output

3. Discards
secret

Trusted setup
parameters



Trusted setup

Distributed Trusted Setup ceremony

m What if secret isn't discarded? Hence, distributed ceremony.

m Multiple people individually generate secret, and all these
values together generate the trusted setup parameter.

m If at least one person discards their secret, then noone can
cheat the verifier.

Each participant

generates and

brings in their
own secret

Trusted setup generation
procedure

Output
(trusted setup data)

(a multi-party computation
between the participants)

from Vitalik's post


https://vitalik.eth.limo/general/2022/03/14/trustedsetup.html

Trusted setup

Need for trusted setup

m STARKs do not need a trusted setup, and are quantum
resistant.

m Plonk requires a “universal” trusted setup ceremony: output
of one ceremoney can be used for setups.

m Protocols like Groth16 require circuit (function) specific
ceremony: output of one ceremony isn't usable if the setup is
changed. However, it boasts of the smallest proof size and
verification time.



Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Need for trusted setup

Privacy & Scaling Explorations
gm -+ we're thrilled to announce the Multi-Party Computation (MPC)
Phase 2 Trusted Setup ceremony for the Semaphore V4 protocol.

Contributing is just a few clicks from your browser :)
1. Visit

2. Login w/ your Github account
3. Hit "contribute"

@PrivacyScaling



https://x.com/PrivacyScaling

Trusted setup

SNARK vs STARK

m S(uccint) N(on-interactive) AR(gument of) K(nowledge).
m S(calable) T(ransparent) AR(gument of) K(nowledge).

See 17 misconceptions about SNARKSs.


https://a16zcrypto.com/posts/article/17-misconceptions-about-snarks/

ZK stack

From theory to application

m Underlying theory: ZK proof systems. Groth16, Plonk,
STARK.

m Implementing theory: Frameworks or languages to generate
prover and verifier program. Circom, Halo2, Plonky, Cairo.

m Applications: Write programs (the function f) in these
langauges: Dark forest, Rollups, zkVMs, Semaphore, MACI,
zkEmail. These programs are also called circuits.



ZK stack

From theory to application

Stack

Applications written in frameworks

Frameworks or languages implementing proof systems
ZK proof systems




ZK stack

Feeling ZK!

A Circom program:

template Example () {
signal input x_1;
signal input x_2;
signal output y;

y <= x_1 % x_2;

}

component main { public [ x.2 | } = Example();

Y = F(X1y ooy Xiy Xj 10y Xn): Y = X1 % X2



ZK stack

Inputs

a [5 ]
b [77 J

Proof

Verify

{"pi_a":
["124675834391693448361347 330937342328261194692214346
8044994427404547729178329"
32729446932874307315703384477727189495263490822675'
u, "

[ ["330855248202486926767164408420941336009421055978900
8182227328390991985413982", "17473929913802182799905230
164395741787503961769527161836793273603832956352581"] '
["8721197599038458754895355503986198514599770790322670

642454377021464115758701","157. 777836
4945364 M"-’7194271861 70702993223599584373075960835" ’
["1","0"11,"pi_c":

[“1356193622951725220812553792026318066095714018922010
6351375161624456040285657", "' 11805626986272965145686466
045604406781923975582080460601070649027359790372809" , "
1"]1,"protocol":"groth16","curve":"bn128"}

’ 385"

4

Proof is valid




ZK stack

Feeling ZK!

A Circom program:

template Example () {
signal input x_1;
signal input x_2;
signal output y;

y <— x_1 % x_2
y x_1 % x_2;




ZK stack

Mental Model to understand Circom circuits

A Circom program is split into two programs for verifier and honest
Prover.

Prover program:

template Example () {

y <— x_1 % x_2; // compute y

}

Verifier program (just a mental model):

template Example () {

x-1 % x_.2; // verify y matches x_1 * x_2



ZK stack

Buggy code

A Circom program:

template Example () {
signal input a;
signal input b;
signal output q;

q<— a \ b;

}

component main { public [ a | } = Example();



ZK stack

Buggy code

Prover program:

template Example () {

q <— a\b; // compute q
}

Verifier program (just a mental model):

template Example () {

// nothing: Any (a, b, q) is accepted



Exciting applications

Scaling Ethereum

Validity Rollup: Starknet (STARK), Scroll (Halo2), zkSync
(STARK then SNARK), Polygon zkEVM (STARK then Groth16).

m Uses ZK only for scalability.
ZK Rollup: Aztec.

m Uses ZK for privacy and scalability. Hence, can be called the
true ZK rollup.



Exciting applications

Proving execution of an Al model. Input can be kept public or
private. Some use cases:
m To prove that a service provider has actually run the model.

m Proving you know the input for a particular output. You may
not want to reveal what prompt you are using.

m It's currently impractical to generate a ZK proof for large
models (Llama, GPT etc.).

m Modulus labs, Giza.


https://www.modulus.xyz/
https://www.gizatech.xyz/

Exciting applications

Private Voting: MACI

m Correct execution: Ensures counting process is correct.

m Censorship resistance: Anyone eligible to vote should be able
to vote how they choose, and every vote should be counted.

m Privacy: you should not be able to tell which candidate
someone specific voted for, or even if they voted at all.

m Coercion resistance: you should not be able to prove to
someone else how you voted, even if you want to.

m MACI. Other PSE projects:
https://pse.dev/en/projects.


https://maci.pse.dev/
https://pse.dev/en/projects

Learning resources

Resources for application devs

m Circom docs: https://docs.circom.io/
m Circom course from OxPARC: https://learn.Oxparc.org/

m Rareskills ZK book:
https://www.rareskills.io/zk-book,
https://www.rareskills.io/post/circom-tutorial

m Tornado Cash 101: Mirror article


https://docs.circom.io/
https://learn.0xparc.org/
https://www.rareskills.io/zk-book
https://www.rareskills.io/post/circom-tutorial
https://mirror.xyz/0xC064aE831f6e4Fa25c7828784FDeC6Ec6f4162cC/Fcy0A-wrjUqnhRilcx1e1Wv0MNpdqByPgmYHS0qRNdo

Learning resources

Resources for theory

m Why and How zk-SNARK Works: Definitive Explanation by
Maksym Petkus.

m STARK @ home by StarkWare
m Proofs, Arguments, and Zero-Knowledge by Justin Thaler.
m Moonmath Manual by Least Authority


https://arxiv.org/pdf/1906.07221
https://petkus.info/
https://www.youtube.com/playlist?list=PLcIyXLwiPilUFGw7r2uyWerOkbx4GFMXq
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://x.com/SuccinctJT
https://github.com/LeastAuthority/moonmath-manual
https://leastauthority.com/

	Introduction
	ZK proof system
	Trusted setup
	ZK stack
	Exciting applications
	Learning resources

