
Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Zero Knowledge Proofs
High-level primer

@blockdeveth

Privacy & Scaling Explorations

June 20, 2024

https://x.com/blockdeveth

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Table of Contents

1 Introduction

2 ZK proof system

3 Trusted setup

4 ZK stack

5 Exciting applications

6 Learning resources

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Related

Context: Zero-knowledge cryptography, Zero-knowledge proofs,
privacy, scalability.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

The Setup

A function y = f (x1, x2, ..., xn).

Some inputs are private: {x1, ..., xi}, rest are public
{xi+1, ..., xn, y}.
Private inputs mean that the input values are only known to
the Prover.

Public inputs mean that the Prover will send the input values
to the Verifier.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

The Goal

Prover has to convince the Verifier that it has correctly
computed the following while keeping {x1, ..., xi} private:

y = f (x1, ..., xi , xi+1, ..., xn)

In other words, Verifier has to be convinced that given
{xi+1, ..., xn, y}:

1 Prover knows values for {x1, ..., xi} (witness) such that

y = f (x1, ..., xi , xi+1, ..., xn)

Verifier should only learn about the truth of the statement,
and nothing else (private inputs, intermediate values), hence
Zero-knowledge.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Example

The Setup

Our function: y = SHA(x).

Private input: x

Public input: y

The Goal

Verifier has to be convinced that Prover knows some x such
that y = SHA(x).

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

One specific instance

Prover computes y1 = SHA(12834992849219753).

It generates a proof p (a long string of bytes), and sends
(p, y1) to Verifier.

Verifier runs its program on (p, y1).

Verifier is convinced iff the program returns true.

Application: Password verification. Server stores the password
hash, and user generates a ZK-proof to prove it knows the related
password.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

One specific instance

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

zkEVM Example

The Setup

Our function: new state = EVM(state, transaction).

No Private input.

All inputs are public.

The Goal

Verifier has to be convinced that the transaction was executed
correctly by the Prover.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Assumptions as application devs

Verifier is honest.

Prover is dishonest.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

What is a ZK proof system?

Given a function y = f (x1, ..., xi , xi+1, ..., xn), a ZK proof system
defines how to write a Verifier program V, and a Prover program P:

Honest prover can run P to generate proof, and send data to
verifier.

Verifier can input received data into V, and accept or reject
the proof.

Groth16, Plonk, STARK.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Example

V can be deployed as a smart contract.

P can be run on user devices, and the proof and public inputs
can be sent with the transaction.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Properties of a ZK proof system

Completeness: Prover can convince Verifier of true
statements.

Soundness: Malicious Prover cannot convince Verifier of false
statements.

Zero-knowledge: Verifier should not learn anything except
the validity of the statement.

Enables privacy (e.g. MACI).

Ideally Succintness: Small proof, fast to verify

Enables scaling (e.g. Rollups, Mina).

https://maci.pse.dev/

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Parameters to evaluate ZK proof systems

Proof size: Size (in B, KB) of the generated proof.

Proof generation time: Time required to generate ZK proof by
an honest prover.

Proof verification time: Time required to verify the proof by
an honest verifier.

Quantum resistance: Does quantum computing break any
property of the ZK proof system?

Need for trusted setup.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Trusted Setup

Remember “The Setup” from before?

You have a function y = f (x1, x2, ..., xn).

Some inputs are private. Let’s say the first i inputs are
private: {x1, ..., xi} and the rest are public {xi+1, ..., xn, y}.
Private inputs mean that the values of these inputs are only
known to the Prover.

Public inputs mean that the Prover will send the values of
these inputs to the Verifier.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Trusted Setup

Remember “The Setup” from before?
Some ZK proof systems require pre-processing to generate
parameters for the setup phase. These parameters are used every
time the proof system protocol is run.

These parameters are generated via Trusted Setup ceremony.

A random secret number is required to generate these
parameters.

Access to this secret allows generating fake proofs and
cheating the verifier.

This secret has to be discarded after the trusted setup
ceremony is complete. Hence, “toxic waste”.

Hence the name “Trusted” setup ceremony, since we are
trusting (or assuming) secret is discarded by the generator.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Trusted Setup

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Distributed Trusted Setup ceremony

What if secret isn’t discarded? Hence, distributed ceremony.

Multiple people individually generate secret, and all these
values together generate the trusted setup parameter.

If at least one person discards their secret, then noone can
cheat the verifier.

from Vitalik’s post

https://vitalik.eth.limo/general/2022/03/14/trustedsetup.html

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Need for trusted setup

STARKs do not need a trusted setup, and are quantum
resistant.

Plonk requires a “universal” trusted setup ceremony: output
of one ceremoney can be used for setups.

Protocols like Groth16 require circuit (function) specific
ceremony: output of one ceremony isn’t usable if the setup is
changed. However, it boasts of the smallest proof size and
verification time.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Need for trusted setup

@PrivacyScaling

https://x.com/PrivacyScaling

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

SNARK vs STARK

S(uccint) N(on-interactive) AR(gument of) K(nowledge).

S(calable) T(ransparent) AR(gument of) K(nowledge).

See 17 misconceptions about SNARKs.

https://a16zcrypto.com/posts/article/17-misconceptions-about-snarks/

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

From theory to application

Underlying theory: ZK proof systems. Groth16, Plonk,
STARK.

Implementing theory: Frameworks or languages to generate
prover and verifier program. Circom, Halo2, Plonky, Cairo.

Applications: Write programs (the function f) in these
langauges: Dark forest, Rollups, zkVMs, Semaphore, MACI,
zkEmail. These programs are also called circuits.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

From theory to application

Stack
Applications written in frameworks

Frameworks or languages implementing proof systems

ZK proof systems

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Feeling ZK!

A Circom program:

t e m p l a t e Example () {
s i g n a l i n p u t x 1 ;
s i g n a l i n p u t x 2 ;
s i g n a l output y ;

y <== x 1 ∗ x 2 ;
}

component main { p u b l i c [x 2] } = Example () ;

y = f (x1, ..., xi , xi+1..., xn): y = x1 ∗ x2

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Feeling ZK!

A Circom program:

t e m p l a t e Example () {
s i g n a l i n p u t x 1 ;
s i g n a l i n p u t x 2 ;
s i g n a l output y ;

y <−− x 1 ∗ x 2 ;
y === x 1 ∗ x 2 ;

}

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Mental Model to understand Circom circuits

A Circom program is split into two programs for verifier and honest
Prover.
Prover program:

t e m p l a t e Example () {
. . .
y <−− x 1 ∗ x 2 ; // compute y

}

Verifier program (just a mental model):

t e m p l a t e Example () {
. . .
y === x 1 ∗ x 2 ; // v e r i f y y matches x 1 ∗ x 2

}

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Buggy code

A Circom program:

t e m p l a t e Example () {
s i g n a l i n p u t a ;
s i g n a l i n p u t b ;
s i g n a l output q ;

q <−− a \ b ;
}

component main { p u b l i c [a] } = Example () ;

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Buggy code

Prover program:

t e m p l a t e Example () {
. . .
q <−− a\b ; // compute q

}

Verifier program (just a mental model):

t e m p l a t e Example () {
. . .
// n o t h i n g : Any (a , b , q) i s a c c e p t e d

}

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Scaling Ethereum

Validity Rollup: Starknet (STARK), Scroll (Halo2), zkSync
(STARK then SNARK), Polygon zkEVM (STARK then Groth16).

Uses ZK only for scalability.

ZK Rollup: Aztec.

Uses ZK for privacy and scalability. Hence, can be called the
true ZK rollup.

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

zkML

Proving execution of an AI model. Input can be kept public or
private. Some use cases:

To prove that a service provider has actually run the model.

Proving you know the input for a particular output. You may
not want to reveal what prompt you are using.

It’s currently impractical to generate a ZK proof for large
models (Llama, GPT etc.).

Modulus labs, Giza.

https://www.modulus.xyz/
https://www.gizatech.xyz/

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Private Voting: MACI

Correct execution: Ensures counting process is correct.

Censorship resistance: Anyone eligible to vote should be able
to vote how they choose, and every vote should be counted.

Privacy: you should not be able to tell which candidate
someone specific voted for, or even if they voted at all.

Coercion resistance: you should not be able to prove to
someone else how you voted, even if you want to.

MACI. Other PSE projects:
https://pse.dev/en/projects.

https://maci.pse.dev/
https://pse.dev/en/projects

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Resources for application devs

Circom docs: https://docs.circom.io/

Circom course from 0xPARC: https://learn.0xparc.org/

Rareskills ZK book:
https://www.rareskills.io/zk-book,
https://www.rareskills.io/post/circom-tutorial

Tornado Cash 101: Mirror article

https://docs.circom.io/
https://learn.0xparc.org/
https://www.rareskills.io/zk-book
https://www.rareskills.io/post/circom-tutorial
https://mirror.xyz/0xC064aE831f6e4Fa25c7828784FDeC6Ec6f4162cC/Fcy0A-wrjUqnhRilcx1e1Wv0MNpdqByPgmYHS0qRNdo

Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Resources for theory

Why and How zk-SNARK Works: Definitive Explanation by
Maksym Petkus.

STARK @ home by StarkWare

Proofs, Arguments, and Zero-Knowledge by Justin Thaler.

Moonmath Manual by Least Authority

https://arxiv.org/pdf/1906.07221
https://petkus.info/
https://www.youtube.com/playlist?list=PLcIyXLwiPilUFGw7r2uyWerOkbx4GFMXq
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://x.com/SuccinctJT
https://github.com/LeastAuthority/moonmath-manual
https://leastauthority.com/

	Introduction
	ZK proof system
	Trusted setup
	ZK stack
	Exciting applications
	Learning resources

