
Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Zero Knowledge Proofs
High-level primer

@blockdeveth

Privacy & Scaling Explorations

June 20, 2024

https://x.com/blockdeveth


Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Table of Contents

1 Introduction

2 ZK proof system

3 Trusted setup

4 ZK stack

5 Exciting applications

6 Learning resources



Introduction ZK proof system Trusted setup ZK stack Exciting applications Learning resources

Related

Context: Zero-knowledge cryptography, Zero-knowledge proofs,
privacy, scalability.
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The Setup

A function y = f (x1, x2, ..., xn).

Some inputs are private: {x1, ..., xi}, rest are public
{xi+1, ..., xn, y}.
Private inputs mean that the input values are only known to
the Prover.

Public inputs mean that the Prover will send the input values
to the Verifier.
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The Goal

Prover has to convince the Verifier that it has correctly
computed the following while keeping {x1, ..., xi} private:

y = f (x1, ..., xi , xi+1, ..., xn)

In other words, Verifier has to be convinced that given
{xi+1, ..., xn, y}:

1 Prover knows values for {x1, ..., xi} (witness) such that

y = f (x1, ..., xi , xi+1, ..., xn)

Verifier should only learn about the truth of the statement,
and nothing else (private inputs, intermediate values), hence
Zero-knowledge.
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Example

The Setup

Our function: y = SHA(x).

Private input: x

Public input: y

The Goal

Verifier has to be convinced that Prover knows some x such
that y = SHA(x).
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One specific instance

Prover computes y1 = SHA(12834992849219753).

It generates a proof p (a long string of bytes), and sends
(p, y1) to Verifier.

Verifier runs its program on (p, y1).

Verifier is convinced iff the program returns true.

Application: Password verification. Server stores the password
hash, and user generates a ZK-proof to prove it knows the related
password.
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One specific instance
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zkEVM Example

The Setup

Our function: new state = EVM(state, transaction).

No Private input.

All inputs are public.

The Goal

Verifier has to be convinced that the transaction was executed
correctly by the Prover.
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Assumptions as application devs

Verifier is honest.

Prover is dishonest.
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What is a ZK proof system?

Given a function y = f (x1, ..., xi , xi+1, ..., xn), a ZK proof system
defines how to write a Verifier program V, and a Prover program P:

Honest prover can run P to generate proof, and send data to
verifier.

Verifier can input received data into V, and accept or reject
the proof.

Groth16, Plonk, STARK.
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Example

V can be deployed as a smart contract.

P can be run on user devices, and the proof and public inputs
can be sent with the transaction.
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Properties of a ZK proof system

Completeness: Prover can convince Verifier of true
statements.

Soundness: Malicious Prover cannot convince Verifier of false
statements.

Zero-knowledge: Verifier should not learn anything except
the validity of the statement.

Enables privacy (e.g. MACI).

Ideally Succintness: Small proof, fast to verify

Enables scaling (e.g. Rollups, Mina).

https://maci.pse.dev/
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Parameters to evaluate ZK proof systems

Proof size: Size (in B, KB) of the generated proof.

Proof generation time: Time required to generate ZK proof by
an honest prover.

Proof verification time: Time required to verify the proof by
an honest verifier.

Quantum resistance: Does quantum computing break any
property of the ZK proof system?

Need for trusted setup.
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Trusted Setup

Remember “The Setup” from before?

You have a function y = f (x1, x2, ..., xn).

Some inputs are private. Let’s say the first i inputs are
private: {x1, ..., xi} and the rest are public {xi+1, ..., xn, y}.
Private inputs mean that the values of these inputs are only
known to the Prover.

Public inputs mean that the Prover will send the values of
these inputs to the Verifier.
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Trusted Setup

Remember “The Setup” from before?
Some ZK proof systems require pre-processing to generate
parameters for the setup phase. These parameters are used every
time the proof system protocol is run.

These parameters are generated via Trusted Setup ceremony.

A random secret number is required to generate these
parameters.

Access to this secret allows generating fake proofs and
cheating the verifier.

This secret has to be discarded after the trusted setup
ceremony is complete. Hence, “toxic waste”.

Hence the name “Trusted” setup ceremony, since we are
trusting (or assuming) secret is discarded by the generator.
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Trusted Setup
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Distributed Trusted Setup ceremony

What if secret isn’t discarded? Hence, distributed ceremony.

Multiple people individually generate secret, and all these
values together generate the trusted setup parameter.

If at least one person discards their secret, then noone can
cheat the verifier.

from Vitalik’s post

https://vitalik.eth.limo/general/2022/03/14/trustedsetup.html
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Need for trusted setup

STARKs do not need a trusted setup, and are quantum
resistant.

Plonk requires a “universal” trusted setup ceremony: output
of one ceremoney can be used for setups.

Protocols like Groth16 require circuit (function) specific
ceremony: output of one ceremony isn’t usable if the setup is
changed. However, it boasts of the smallest proof size and
verification time.
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Need for trusted setup

@PrivacyScaling

https://x.com/PrivacyScaling
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SNARK vs STARK

S(uccint) N(on-interactive) AR(gument of) K(nowledge).

S(calable) T(ransparent) AR(gument of) K(nowledge).

See 17 misconceptions about SNARKs.

https://a16zcrypto.com/posts/article/17-misconceptions-about-snarks/
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From theory to application

Underlying theory: ZK proof systems. Groth16, Plonk,
STARK.

Implementing theory: Frameworks or languages to generate
prover and verifier program. Circom, Halo2, Plonky, Cairo.

Applications: Write programs (the function f ) in these
langauges: Dark forest, Rollups, zkVMs, Semaphore, MACI,
zkEmail. These programs are also called circuits.
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From theory to application

Stack
Applications written in frameworks

Frameworks or languages implementing proof systems

ZK proof systems
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Feeling ZK!

A Circom program:

t e m p l a t e Example ( ) {
s i g n a l i n p u t x 1 ;
s i g n a l i n p u t x 2 ;
s i g n a l output y ;

y <== x 1 ∗ x 2 ;
}

component main { p u b l i c [ x 2 ] } = Example ( ) ;

y = f (x1, ..., xi , xi+1..., xn): y = x1 ∗ x2
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Feeling ZK!

A Circom program:

t e m p l a t e Example ( ) {
s i g n a l i n p u t x 1 ;
s i g n a l i n p u t x 2 ;
s i g n a l output y ;

y <−− x 1 ∗ x 2 ;
y === x 1 ∗ x 2 ;

}
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Mental Model to understand Circom circuits

A Circom program is split into two programs for verifier and honest
Prover.
Prover program:

t e m p l a t e Example ( ) {
. . .
y <−− x 1 ∗ x 2 ; // compute y

}

Verifier program (just a mental model):

t e m p l a t e Example ( ) {
. . .
y === x 1 ∗ x 2 ; // v e r i f y y matches x 1 ∗ x 2

}
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Buggy code

A Circom program:

t e m p l a t e Example ( ) {
s i g n a l i n p u t a ;
s i g n a l i n p u t b ;
s i g n a l output q ;

q <−− a \ b ;
}

component main { p u b l i c [ a ] } = Example ( ) ;
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Buggy code

Prover program:

t e m p l a t e Example ( ) {
. . .
q <−− a\b ; // compute q

}

Verifier program (just a mental model):

t e m p l a t e Example ( ) {
. . .
// n o t h i n g : Any ( a , b , q ) i s a c c e p t e d

}
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Scaling Ethereum

Validity Rollup: Starknet (STARK), Scroll (Halo2), zkSync
(STARK then SNARK), Polygon zkEVM (STARK then Groth16).

Uses ZK only for scalability.

ZK Rollup: Aztec.

Uses ZK for privacy and scalability. Hence, can be called the
true ZK rollup.
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zkML

Proving execution of an AI model. Input can be kept public or
private. Some use cases:

To prove that a service provider has actually run the model.

Proving you know the input for a particular output. You may
not want to reveal what prompt you are using.

It’s currently impractical to generate a ZK proof for large
models (Llama, GPT etc.).

Modulus labs, Giza.

https://www.modulus.xyz/
https://www.gizatech.xyz/
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Private Voting: MACI

Correct execution: Ensures counting process is correct.

Censorship resistance: Anyone eligible to vote should be able
to vote how they choose, and every vote should be counted.

Privacy: you should not be able to tell which candidate
someone specific voted for, or even if they voted at all.

Coercion resistance: you should not be able to prove to
someone else how you voted, even if you want to.

MACI. Other PSE projects:
https://pse.dev/en/projects.

https://maci.pse.dev/
https://pse.dev/en/projects
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Resources for application devs

Circom docs: https://docs.circom.io/

Circom course from 0xPARC: https://learn.0xparc.org/

Rareskills ZK book:
https://www.rareskills.io/zk-book,
https://www.rareskills.io/post/circom-tutorial

Tornado Cash 101: Mirror article

https://docs.circom.io/
https://learn.0xparc.org/
https://www.rareskills.io/zk-book
https://www.rareskills.io/post/circom-tutorial
https://mirror.xyz/0xC064aE831f6e4Fa25c7828784FDeC6Ec6f4162cC/Fcy0A-wrjUqnhRilcx1e1Wv0MNpdqByPgmYHS0qRNdo
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Resources for theory

Why and How zk-SNARK Works: Definitive Explanation by
Maksym Petkus.

STARK @ home by StarkWare

Proofs, Arguments, and Zero-Knowledge by Justin Thaler.

Moonmath Manual by Least Authority

https://arxiv.org/pdf/1906.07221
https://petkus.info/
https://www.youtube.com/playlist?list=PLcIyXLwiPilUFGw7r2uyWerOkbx4GFMXq
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://x.com/SuccinctJT
https://github.com/LeastAuthority/moonmath-manual
https://leastauthority.com/
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